|  |  |  | 
									
										|  |  
										|  |  
										|  |  
										| LIMDEP V8.0 |  
										| 
 |  
										|  LIMDEP Windows 95/NT版 
  スペック 
  LIMDEP7.0の機能と特徴 
  NLOGIT3.0 
  Applications 
 
  LIMDEP V8.0のTopに戻る 
 
 |  
										| Applications LIMDEPの応用分野
 
 
 A PROGRAM TO FIT A PROBIT MODEL
 When a model is not contained in LIMDEP's menu of procedures, an alternative method is to write the iterative program using LIMDEP' s programming tools. The following general procedure would estimate the parameters of any specified probit model:
 
 
 
												
													| proc=probit(x,y) calc	; k= col(x)
 matrix	; a = [k_0]
 create	; z = 2 * y-1
 label	; 100
 create	; vi = a'x
 ; li = log(phi(z*vi))
 ; gi = z*n01(z*vi)/phi(z*vi)
 ; hi = gi*(vi+gi)
 calc	; l = sum(li)
 matrix	; g = x'gi
 ; h = < x'[hi]x >
 ; e = h * g
 calc	; list ; converge = e'g
 matrix	; a = a + e
 goto	; 100 ; converge > .0001
 matrix	; stat (a,h)
 endproc
 namelist; program = one,gpa,tuce,psi
 execute	; proc=probit(grade,program)
 
 | $ $ number of variables
 $ starting values
 $ will be convenient
 $ beginning of iteration
 ? argument
 ? log-li(i)
 ? 1st derivative
 $ 2nd derivative
 $ log-l
 ? gradient
 ? inverse of hessian
 $ change vector
 $ convergence rule
 $ update for iteration
 $ iterate or exit
 $ report results
 $ procedure now defined
 $ variables on the rhs
 $ execute the procedure
 
 |  
 MARGINAL EFFECTS IN A BOX-COX MODEL
 This application computes the impact of different functional forms on a marginal effect in the probit model. In the probit model, the income variable is transformed by different values for the Box-Cox transformation. The MLE of the marginal effect of income on the probability of loan default is plotted against lambda. (Greene and Seaks, Applied Economics, 1994.)
 
 
 
												
													| read	; data set is entered ... $ create	; lincome = 0 $ (place holder)
 namelist; x=one, family, grad, lincome$
 matrix	; { i = 0 }; lambda=[20_0]; effects=[20_0]$
 proc
 create	; lincome = income @ 1$
 probit	; lhs=default; rhs=x$
 matrix	; xbar = mean (x) $
 calc	; i=i+l; m_e = b(4) * nOl (xbar'b)
 *xbr(income)@(l-1) $
 matrix	; lambda (i) = I; effect(i) = m_e $
 endproc
 execute ; 1 = -.50, 1.41, .10$
 mplot	 ; lhs = lambda; rhs = effect; fill; grid $
 
 |  
 COMPUTING BINARY CHOICE MODELS
 The following obtains parameters for probit and logit models, displays marginal effects for the models, then produces an output table that allows easy comparison of the two models:
 
 
												
													| probit	; lhs = grade; marginal effects ; rhs = one,gpa,tuce,psi $
 logit	; lhs = grade; marginal effects
 ; rhs = one,gpa,tuce,psi $
 review
 
 |  
												
													| Partial derivatives of E[y] = F[*] with respect to the
 vector of characteristics.  They are computed at the
 means of the xs. Observations used for means are all obs.
 
 Variable    Coefficent     Standard Error     z = b/s.e.      p[|Z| > z]
 constant  -2.4447   0.75885   -3.222    0.00127
 gpa     0.53335  0.232246   2.294    0.02177
 tuce   0.16969E-01 0.27120E-01  0.626    0.53150
 psi     0.46791   0.184764   2.494    0.01265
 |  
												
													| Binary Choice Models 
 Probit Model           Logit Model
 
 Variable  Parameter  t-ratio  Parameter  t-ratio
 constant  -7.4522   -2.93  -13.0213   -2.64
 gpa     1.6258   2.34   2.8261    2.24
 tuce     0.0517   0.62   0.0952   0.67
 psi     1.4263   2.40   2.3787    2.23
 log-l    -12.8188       -12.8896
 log-l(0)   -20.5917       -20.5917
 
 |  |  
										| LIMDEP V8.0のTopに戻る |  |  |